--- title: "Diagnostic Plots" author: "Jonathan Bakdash and Laura Marusich" date: "`r Sys.Date()`" output: rmarkdown::html_vignette bibliography: references.bib vignette: > %\VignetteIndexEntry{Diagnostic Plots} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` ```{r setup, include=FALSE} knitr::opts_chunk$set(echo = TRUE, tidy = FALSE) options(width = 80) library(knitr) library(rmarkdown) library(rmcorr) library(gglm) ``` #### Running Example Requires gglm [@gglm] ```{r, eval = FALSE} #Install gglm install.packages("gglm") require(gglm) ``` ## Plotting Model Diagnostics The code below demonstrates how to plot model diagnostics for *rmcorr*. There are four diagnostic plots assessing:
1. Residuals vs. Fitted values: Linearity
2. Quantile-Quantile (Q-Q): Normality of residuals
3. Scale-Location: Equality of variance (homoscedasticity)
4. Residuals vs. Leverage: Influential observations ```{r} raz.rmc <- rmcorr(participant = Participant, measure1 = Age, measure2 = Volume, dataset = raz2005) #Using gglm gglm(raz.rmc$model) #using base R #plot(raz.rmc$model) ``` How much do violations of these assumptions matter? It depends. General Linear Model (GLM) is typically robust to deviations from the above assumptions, but severe violations may produce misleading results [@gelman2020regression]. Also, the reason(s) for violations can matter: "Violations of assumptions may result from problems in the dataset, the use of an incorrect regression model, or both" [@cohen2013applied, p. 117].