---
title: "Correlation Matrix using rmcorr_mat"
author: "Jonathan Bakdash and Laura Marusich"
date: "`r Sys.Date()`"
output: rmarkdown::html_vignette
bibliography: references.bib
vignette: >
%\VignetteIndexEntry{Correlation Matrix using rmcorr_mat}
%\VignetteEngine{knitr::rmarkdown}
%\VignetteEncoding{UTF-8}
---
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
```
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE, tidy = FALSE)
options(width = 80)
library(knitr)
library(rmarkdown)
library(rmcorr)
library(corrplot)
```
#### Running Examples Requires corrplot [@corrplot2021]
```{r, eval = FALSE}
#Install corrplot
install.packages("corrplot")
require(corrplot)
```
## Plotting a Correlation Matrix
The output from *rmcorr_mat* can be used be used to plot a correlation matrix.
```{r}
dist_rmc_mat <- rmcorr_mat(participant = Subject,
variables = c("Blindwalk Away",
"Blindwalk Toward",
"Triangulated BW",
"Verbal",
"Visual matching"),
dataset = twedt_dist_measures,
CI.level = 0.95)
corrplot(dist_rmc_mat$matrix)
```
## Plotting Multiple Models
The output can also be used to plot multiple models side-by-side.
```{r}
#Number of models being plotted
n.models <- length(dist_rmc_mat$models)
#Change graphing parameters to plot side-by-side
#with narrower margins
par(mfrow = c(3,4),
mar = c(2.75, 2.4, 2.4, 1.4))
for (i in 1:n.models) {
plot(dist_rmc_mat$models[[i]])
}
#Reset graphing parameters
#dev.off()
```
## Adjusting for Multiple Comparisons
The third component of the output from *rmcorr_mat()* contains a summary of results. Using the summary component, we demonstrate adjusting for multiple comparisons using two methods: the Bonferroni correction and the False Discovery Rate (FDR).
This example also compares the unadjusted *p*-values to both adjustment methods. Because most of the unadjusted *p*-values are quite small, many of the adjusted *p*-values tend to be similar to the unadjusted ones and the two adjustment methods also tend to produce similar *p*-values.
```{r}
#Third component: Summary
dist_rmc_mat$summary
#p-values only
dist_rmc_mat$summary$p.vals
#Vector of original, unadjusted p-values for all 10 comparisons
p.vals <- dist_rmc_mat$summary$p.vals
p.vals.bonferroni <- p.adjust(p.vals,
method = "bonferroni",
n = length(p.vals))
p.vals.fdr <- p.adjust(p.vals,
method = "fdr",
n = length(p.vals))
#All p-values together
all.pvals <- cbind(p.vals, p.vals.bonferroni, p.vals.fdr)
colnames(all.pvals) <- c("Unadjusted", "Bonferroni", "fdr")
round(all.pvals, digits = 5)
```