--- title: "Correlation Matrix using rmcorr_mat" author: "Jonathan Bakdash and Laura Marusich" date: "`r Sys.Date()`" output: rmarkdown::html_vignette bibliography: references.bib vignette: > %\VignetteIndexEntry{Correlation Matrix using rmcorr_mat} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` ```{r setup, include=FALSE} knitr::opts_chunk$set(echo = TRUE, tidy = FALSE) options(width = 80) library(knitr) library(rmarkdown) library(rmcorr) library(corrplot) ``` #### Running Examples Requires corrplot [@corrplot2021] ```{r, eval = FALSE} #Install corrplot install.packages("corrplot") require(corrplot) ``` ## Plotting a Correlation Matrix The output from *rmcorr_mat* can be used be used to plot a correlation matrix. ```{r} dist_rmc_mat <- rmcorr_mat(participant = Subject, variables = c("Blindwalk Away", "Blindwalk Toward", "Triangulated BW", "Verbal", "Visual matching"), dataset = twedt_dist_measures, CI.level = 0.95) corrplot(dist_rmc_mat$matrix) ``` ## Plotting Multiple Models The output can also be used to plot multiple models side-by-side. ```{r} #Number of models being plotted n.models <- length(dist_rmc_mat$models) #Change graphing parameters to plot side-by-side #with narrower margins par(mfrow = c(3,4), mar = c(2.75, 2.4, 2.4, 1.4)) for (i in 1:n.models) { plot(dist_rmc_mat$models[[i]]) } #Reset graphing parameters #dev.off() ``` ## Adjusting for Multiple Comparisons The third component of the output from *rmcorr_mat()* contains a summary of results. Using the summary component, we demonstrate adjusting for multiple comparisons using two methods: the Bonferroni correction and the False Discovery Rate (FDR).

This example also compares the unadjusted *p*-values to both adjustment methods. Because most of the unadjusted *p*-values are quite small, many of the adjusted *p*-values tend to be similar to the unadjusted ones and the two adjustment methods also tend to produce similar *p*-values. ```{r} #Third component: Summary dist_rmc_mat$summary #p-values only dist_rmc_mat$summary$p.vals #Vector of original, unadjusted p-values for all 10 comparisons p.vals <- dist_rmc_mat$summary$p.vals p.vals.bonferroni <- p.adjust(p.vals, method = "bonferroni", n = length(p.vals)) p.vals.fdr <- p.adjust(p.vals, method = "fdr", n = length(p.vals)) #All p-values together all.pvals <- cbind(p.vals, p.vals.bonferroni, p.vals.fdr) colnames(all.pvals) <- c("Unadjusted", "Bonferroni", "fdr") round(all.pvals, digits = 5) ```